List 3

Local extremes, concavity, infection points
68. (a) Calculate the derivative of $5 x^{2}-3 \sin (x)$.
(b) Calculate the derivative of $10 x-3 \cos (x)$.
(c) Calculate the derivative of $10+3 \sin (x)$.
(d) Calculate the derivative of $3 \cos (x)$.
(e) Calculate the derivative of $-3 \sin (x)$.

The second derivative of a function is the derivative of its derivative. The second derivative of $y=f(x)$ with respect to x can be written as any of

$$
f^{\prime \prime}(x), \quad f^{\prime \prime}, \quad\left(f^{\prime}\right)^{\prime}, \quad f^{(2)}, \quad y^{\prime \prime}, \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\mathrm{~d} f}{\mathrm{~d} x}\right], \quad \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} .
$$

We say f is twice-differentiable if $f^{\prime \prime}$ exists on the entire domain of f. Higher derivatives (third, fourth, etc.) are defined and written similarly.
A twice-differentiable function $f(x)$ is concave up at $x=a$ if $f^{\prime \prime}(a)>0$.
A twice-differentiable function $f(x)$ is concave down at $x=a$ if $f^{\prime \prime}(a)<0$.
An inflection point is a point where the concavity of a function changes.
69. Compute the following second derivatives:
(a) $f^{\prime \prime}(x)$ for $f(x)=x^{12}$
(d) $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(5 x^{2}-7 x+28\right)$
(b) $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ for $f(x)=x^{3}+x^{8}$
(e) $f^{\prime \prime}(x)$ for $f(x)=-2 x^{8}+x^{6}-x^{3}$
(c) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for $y=8 x-4$
(f) $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ for $f(x)=a x^{2}+b x+c$
70. Find $f^{\prime \prime \prime}(x)=\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}=f^{(3)}(x)$ (the third derivative) for $f(x)=x^{7}$.
71. Give $f^{(5)}(x)=\frac{\mathrm{d}^{5} f}{\mathrm{~d} x^{5}}$ (the fifth derivative) for $f(x)=5 x^{2}-3 \sin (x)$.
72. (a) Is the function $3 x^{2}+8 \cos (x)$ concave up or concave down at $x=0$?
(b) Is the function $3 x^{2}+5 \cos (x)$ concave up or concave down at $x=0$?
73. On what interval(s) is $54 x^{2}-x^{4}$ concave up?
74. For each of the following functions, is $f^{\prime \prime}(0)$ is positive, zero, or negative?
(a)

(b)

(c)

(d)

(e)

(f)

75. For $f(x)=x^{3}-x^{2}-x$,
(a) At what x value(s) does $f(x)$ change sign? That is, list values r where either $f(x)<0$ when x is slightly less than r and $f(x)>0$ when x is slightly more than r, or $f(x)>0$ when x is slightly less than r and $f(x)<0$ when x is slightly more than r.
(b) At what x value(s) does $f^{\prime}(x)$ change sign?
(c) At what x value(s) does $f^{\prime \prime}(x)$ change sign?
(d) List all inflection points of $x^{3}-x^{2}-x$.

W6. Give an example of a function with one local maximum and two local minimums but no inflection points.
77. Which graph below has $f^{\prime}(0)=1$ and $f^{\prime \prime}(0)=-1$?
(A)

(B)

(C)

(D)

(E)

(F)

For a twice-differentiable function $f(x)$ with a critical point at $x=c, \ldots$

The Second Derivative Test:

- If $f^{\prime \prime}(c)>0$ then f has a local minimum at $x=c$.
- If $f^{\prime \prime}(c)<0$ then f has a local maximum at $x=c$.
- If $f^{\prime \prime}(c)=0$ the test is inconclusive.

The First Derivative Test:

- If $f^{\prime}(x)<0$ to the left of $x=c$ and $f^{\prime}(x)>0$ to the right of $x=c$ then f has a local minimum at $x=c$.
- If $f^{\prime}(x)>0$ to the left of $x=c$ and $f^{\prime}(x)<0$ to the right of $x=c$ then f has a local maxium at $x=c$.
- If $f^{\prime}(x)$ has the same sign on both sides of $x=c$ then $x=c$ is neither a local minimum nor a local maximum.

78. Find all critical points of

$$
4 x^{3}+21 x^{2}-24 x+19
$$

and classify each as a local minimum, local maximum, or neither.
79. Find and classify the critical points of

$$
f(x)=x^{4}-4 x^{3}-36 x^{2}+18 .
$$

[^0]80. Find the inflection points of the function from Task 79.
$\sum 81$. Find and classify the critical points of $f(x)=x(6-x)^{2 / 3}$.
82. Find and classify the critical points of $\frac{3}{2} x^{4}-16 x^{3}+63 x^{2}-108 x+51$.
83. Label each of following statements as "true" or "false":
(a) Every critical point of a differentiable function is also a local minimum.
(b) Every local minimum of a differentiable function is also a critical point.
(c) Every critical point of a differentiable function is also an inflection point.
(d) Every inflection point of a differentiable function is also a critical point.
84. A twice-differentiable function $f(x)$ has the following properties:
\[

$$
\begin{array}{lll}
f(4)=2 & f^{\prime}(4)=18 & f^{\prime \prime}(4)=0 \\
f(7)=19 & f^{\prime}(7)=0 & f^{\prime \prime}(7)=-1 .
\end{array}
$$
\]

Label each of following statements as "true", "false", or "cannot be determined":
(a) f has a critical point at $x=4$.
(b) f has a local maximum at $x=4$.
(c) f has an absolute maximum at $x=4$.
(d) f has an inflection point at $x=4$.
(e) f has a critical point at $x=7$.
(f) f has a local maximum at $x=7$.
(g) f has an absolute maximum at $x=7$.
(h) f has an inflection point at $x=7$.
$\geqslant 85$. What is the maximum number of inflection points that a function of the form

$$
\text { _ } x^{6}+\ldots x^{5}+\ldots x^{4}+\ldots x^{3}+\ldots x^{2}+\ldots x+\ldots
$$

can have?
Basic functions: $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{p}\right]=p x^{p-1}, \quad \frac{\mathrm{~d}}{\mathrm{~d} x}[\sin (x)]=\cos (x), \quad \frac{\mathrm{d}}{\mathrm{d} x}[\cos (x)]=-\sin (x)$.
Sum Rule: $(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad$ Product Rule: $(f \cdot g)^{\prime}=f g^{\prime}+f^{\prime} g$
Chain Rule: $(f(g))^{\prime}=f^{\prime}(g) \cdot g^{\prime} \quad$ Quotient Rule: $(f / g)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
86. Give an equation for the tangent line to $y=\sin (\pi x)$ at $x=2$.
87. Find the derivative of $\sin \left(\sqrt{\cos \left(2 x^{3}+8\right)}\right)$.
88. (a) Use the Quotient Rule to differentiate $\frac{\sin (x)}{x^{4}}$.
(b) Use the Product Rule to differentiate $x^{-4} \sin (x)$.
(c) Use algebra to compare your answers from parts (a) and (b).
89. At $x=2$, is $\frac{x^{2}}{1+x^{3}}$ increasing, decreasing, or neither?
90. At $x=0$, is $\sqrt{2+\sin (x)}$ concave up, concave down, or neither?
91. Match the functions (a)-(d) with their derivatives (I)-(IV).
(a) $\tan (x)=\frac{\sin (x)}{\cos (x)}$
(I) $\sec (x) \tan (x)=\frac{\sin (x)}{(\cos (x))^{2}}$
(b) $\cot (x)=\frac{\cos (x)}{\sin (x)}$
(II) $-(\csc (x))^{2}=\frac{-1}{(\sin (x))^{2}}$
(c) $\sec (x)=\frac{1}{\cos (x)}$
(III) $(\sec (x))^{2}=\frac{1}{(\cos (x))^{2}}$
(d) $\csc (x)=\frac{1}{\sin (x)}$
$(\mathrm{IV})-\csc (x) \cot (x)=\frac{-\cos (x)}{(\sin (x))^{2}}$
92. Match the functions (a)-(g) to their second derivatives (I)-(VII).
(a)

(I)

(b)

(II)

(c)

(III)

(d)

(IV)

(e)

(V)

(f)

(VI)

(g)

(VII)

[^0]: "Classify the critical points" means to say whether each one is a local minimum, local maximum, or neither.

